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NOTICE

This report was prepared as an account of Government sponsored
work. Neither the United States, nor the National Aeronautics
ond Space Administration (NASA), nor any person acting on

behalf of NASA:

A.) Mockes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, apparatus,
method, or process disclosed in this report may not
infringe privately owned rights; or

B.) Assumes any liobilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method or process disclosed in
this report.

As used above, “person acting on behalf of NASA® includes
ony employee or contractor of NASA, or employee of such con-
tractor, to the extent that such employee or contractor of NASA,
or employee of such contractor prepares, disseminates, or
provides access to, any information pursuant to his employment
or contract with NASA, or his employment with such contractor.
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I. SUMMARY

Bearing stability is one of the basic problems associated with high
speed turbomachinery. Experience has shown that rotors with lightly loaded,
high speed fluid film bearings often exhibit destructive shaft whirling which
can limit speed or bearing life. The problem is therefore one of particular
importance in space power systems currently under development, where high speeds
and reliable unattended operation are required in a system which may operate in
a zero gravity environment. The program described in this report was conducted
in answer to NASA PRGS 3526 of May 22, 1961, to investigate rotor bearing
stability.

The objectives of this program were to:

1. Analyze a number of bearing types which experience or theoretical
considerations pointed to as promising candidates for stable rotor
operation.

2, Select and design specific bearings from among those analyzed for
testing under conditions partially simulating those of the actual,
liquid metal bearing application.

3. Design and build a test stand capable of evaluating the selected
bearings under a wide range of rotor speeds, static and dynamic
loads and other significant bearing and rotor parameters.

4, Conduct tests for evaluating the stability performance of the
various bearing types with a low viscosity lubricant and over a

range of bearing parameters,

The previous objectives were achieved, Figure 1 is a view of the
test device. The bearings selected and tested included the following: the
two axial groove bearing of length/diameter ratio one and also one and one-half;

the three-lobe bearing; tilting pad bearing; the orthogonally displaced elliptical
-1-



bearing; and the compound cylindrical bearing. These bearing types are shown
in Figures 2 to 7. Tests were conducted over a large span of variables,
including:

1. Shaft speed: 60 to 570 rps on a test shaft 1-1/4 inch nominal
diameter.

2. Shaft clearance: 3 different shaft sizes employed to vary clearance.

3. Static loads: 0 to 77.4 lbs. external load per bearing.
4. Unbalance: O to 6.25 gram-inch per bearing.

5. Mass distribution: 3 different rotor mass distributions.

6. Lubricant: distilled water at temperatures between 75°F and lSOoF,
and at typical supply pressures between 5 psig and 70 psig.
During the tests, the primary objective was to observe the effect
of the bearing and rotor variables upon the stability of rotor motion; a
second objective was the measurement of power loss for the bearings in tur-
bulent operation. Accordingly, the test device was equipped with non-contacting
displacement gages to measure shaft center position. Drive torque to the test
rotor was measured with the aid of a special non-contacting instrumentation
system sensing the twist in a long, thin drive shaft.
While the displacement gages permitted quantitative measurement of
the shaft center vibration and observation of the shaft orbit, they were found
inadequate for accurate film thickness and attitude angle measurements. This
is attributed to erratic shift in the gage zero which occurs when the shaft
rotates at speeds above 100 cps. Measurements indicate that the sensitivity
of the gages (volts change per unit displacement change) is unaffected by the
zero shift. Hence, the ability to observe the onset and severity of shaft
whirling was not hampered. |
All bearing-rotor combinations were found to permit shaft whirl at

some test speed. The type of whirl was either half-frequency, synchronous,
i 9




Oor a combined type. The mode of whirling was frequently complex despite the
symmetry of the shaft, bearings, and the applied static and dynamic loads,
That is, when the mode of whirl was observed, a simple cylindrical or conical
btype motion was unusual.

The bearing types which exhibited half-frequency whirl under some
test conditions were the two-axial groove, the displaced elliptical and the
compound cylindrical. The tilting pad and the three-lobe bearing permitted
only a synchronous shaft orbiting for any of the test conditions.

The occurrence of half-frequency whirl was found to be a complex but
reproducible phenomenon. With the two axial groove bearing, for example, the
threshold speed at which it occurred was found to depend upon bearing length/
diameter ratio, clearance, static load and unbalance and rotor mass, For a
given rotor mass and clearance, the threshold speed for half-frequency whirl
correlated with bearing Sommerfeld number (Fig. 36, 37)

In contrast to synchronous whirl, in which the shaft orbit size
increased relatively slowly with speed, half-frequency whirl usually appeared
with incremental changes in the test conditions; the shaft center position
when viewed on an oscilloscope changed suddenly from a steady point to an
orbit of amplitude equal to that of the bearing clearance. Half-frequency
whirl is judged to be potentially the most destructive form of instability
for liquid metal operation. The large amplitude of shaft orbit implies
nearly zero film thickness in the bearings. Furthermore, even if the shaft
is perfectly balanced about the journal axis, when the journal axis itself
orbits at a large amplitude, large dynamic forces occur. The combination of
large forces together with boundary lubrication at high speeds is a condition
conducive to short bearing life. The méterials chosen for the test shaft and

bearing for operation in water, however, exhibited sufficient compatibility
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to avoid seizures under momentary contact. Thus, it was found possible to
observe shaft instabilities without damage to the test rig.

Although the two axial groove bearing type was not free from half-
frequency whirl over all the test conditions, the highest test speed (570 rps)
was achieved with this bearing type for an acceptable amplitude, Half-frequency
whirl could be suppressed through static or dynamic loading. Furthermore, with
an L/D = 1-1/2 and a 2 mil diametrical clearance shaft, it was demonstrated that
the instability region had an upper (but relatively low) speed limit. Higher
speeds eliminated the half-frequency whirl instability and permitted maximum
test speeds to be attained.

The compound cylindrical bearing and the orthogonally displaced
elliptical bearings both permitted half-frequency shaft whirl at zero load,
the former at 60 rps and the latter at 270 rps. The compound cylindrical
bearing exhibited a reduced load-carrying capacity compared to the other
bearing types. Synchronous whirl amplitudes limited the test speed with the
displaced elliptical bearing.

Tests with the rotor supported on the three lobe and the tilting
pad bearing revealed no half-frequency whirl. Speeds, however, were limited
to 350 cps because of synchronous shaft amplitudes.

Among the bearings tested, none allowed the rotor speed to be in-
creased to more than 350 cps with an unloaded bearing (Test 18, 2 axial groove
L/D = 1-1/2). Speeds were limited either by half-frequency or synchronous type
whirl. Increased static loads permitted higher rotational speeds to be achieved
with a two axial-groove bearing, L/D = 1-1/2, (Test No. 18) under a static
bearing load of 34.4 lbs. The maximum test speed for a lightly loaded bearing
(8.6 1bs.) was 400 cps, (Test No. 6), also with a 2 axial groove bearing of

L/D = 1-1/2.




II. CONCLUSIONS AND RECOMMENDATIONS

It is concluded that the long, 2 axial groove bearing, the tilting
pad bearing and the three lobe bearing merit continued consideration for
liquid metal turbomachinery operation in view of their demonstrated ability
to operate at high speeds and moderate loads without destructive half-frequency
whirl.

It is recommended that tests on these bearing types be continued to
establish the non-whirling, steady-state characteristics, including: film
thickness (eccentricity ratio), attitude angle and more accurate power loss
measurements. This data should be obtained both in the laminar region and at
several values of high Reynolds' number sufficient to establish the effect of
turbulence. The Taylor criterion for vortex formation marking the transition
to turbulence with concentric, ungrooved cylindrical bearings is inadequate
for complex bearings such as tested in the present program. It is also recom-
mended that the dynamic spring and damping coefficients of these bearing types
be evaluated experimentally. This information is necessary to permit the

performance of other rotor configurations to be predicted.



III. DISCUSSION

A. Rotor-Bearing System Considerations for Liquid-Metal Operation

The operation of a high speed rotor on fluid-film bearings presents
problems similar in kind but more severe in degree to those existing in more
conventional oil-lubricated bearing-rotor systems. The problem of material
compatibility with the liquid metal lubricant is an important one, but belongs
to a separate category and will not be discussed further. Three of the most
important considerations are the stability of shaft motion; load-carrying
capacity of the bearings for an arbitrary load direction; and the presence of
turbulence.

Different definitions of shaft instability can be given; for the
present purpose, however, we will define shaft instability as any motion of the
geometric center of the journal which does not disappear with time. Two types
of instability can then be distinguished, i.e.,

1. Synchronous whirl - is a forced vibration of the journal caused by

a rotating load. Its frequency is equal to that of the shaft rotating
speed. Synchronous whirl can occur with an unbalanced rotor or with

a well-balanced rotor operating at the critical (resonant) speed of
the bearing-rotor system. It may be difficult to distinguish between
rotor vibration due to unbalance or resonance. The amplitude of
viBration may prevent increasing the rotor speed to pass through a
possible resonant condition.

2. Half-frequency whirl - is an instability of the fluid film of the

bearing which is characterized by a whirl of the journal centers at

a speed approximately one-half that of the shaft rotational frequency.
For such a condition, bearing theory predicts a complete loss of the
load-carrying capacity of the fluid film. Experience has shown that

-6-
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lightly loaded journal bearings operating at high speeds are especially
prone to half-frequency whirl instability. The absence of gravity loads

for space-power turbomachinery plant therefore points to half-frequency

whirl azs a@a very important consideration.

A rotor operating on fluid-film bearings is analagous to a distributed
mass on non-linear springs. Consequently, the system is theoretically capable of
exhibiting resonances either of the flexible or rigid body type. With low vis-
cosity lubricants and high shaft stiffness of space power plants, rigid-body
resonances are the phenomenon most likely to occur in achieving the desired
speed. Therefore, the effect of bearing stiffness upon the rotor resonances
and the ability of the bearing to damp out rotor vibrations form a further con-
sideration in the selection of bearings.

The low viscosity of the liquid metals such as potassium and sodium
together with the high rotational speeds leads to turbulent conditions in the
bearing fluid film. The classical bearing theory has been developed on the
basis of laminar bearing operation which is adequate for most conventional
0il-film applications. There has been little experimental data available on
bearings in turbulent flow, and a special lack of information on the complex
bearings which experience has shown to inhibit half-frequency whirl. It is
known, however, that turbulence increases the load-carrying capacity and also
the power loss by a large but poorly-defined factor. In order to predict the
rotor-bearing system resonances, the effect of turbulence on fluid film stiff-
ness and damping requires careful consideration.

B. Evaluation of Bearings for Liquid Metal Operation

A direct evaluation of bearing hydrodynamic performance using liquid
metals presents severe experimental difficulty. An alternative approach is to

simulate the performance of liquid metals with a fluid having similar properties
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at much reduced temperatures, An ideal fluid for simulation at room temperature
would possess an identical absolute viscosity, density, specific heat, thermal
conductivity and vapor pressure as the liquid metal at an elevated temperature.
Shaft sizes, speeds, clearances, loads, etc., can then be the same size in the
simulated test as in the actual application. No such ideal test fluid is known.
Hence, with a real test fluid it is possible only to approach some of the physical
properties of the test fluid. Similarity of the flow conditions must be achieved
partly by adjusting geometrical similarity, as will be shown.

Table 1 compares the properties of potassium with three possible test
fluids, i.e., water, silicone oils and N heptane. In the present program, dis-
tilled water was selected as the lubricant to simulate liquid metal operation
in order to simplify handling and eliminaté any explosion hazard. Two of the
fluid properties which are of particular importance are the absolute viscosity
and the kinematic viscosity. From Table 1 it is seen that the viscosities of
potassium and water are similar but not identical. Figure 8 is a plot of the
variation of water absolute viscosity with temperature.

Absolute viscosity is the fluid property of significance in establishing
identical Sommerfeld numbers with the test and liquid metal fluids. Sommerfeld
number determines the film thickness, coefficient of friction and required

lubricant flow for a bearing in laminar flow. It is defined as:

)

If we wish to maintain frequency, shaft size and unit load the same
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That is, the clearance ratio may be chosen for the tests using dis-
tilled water so as to simulate the application fluid Sommerfeld number. Speeds
and unit loads can then be identical between the two.

"Figure 9 illustrates the clearance ratio required to produce identical
Sommerfeld numbers for the two fluids, assuming equal speeds and loads. With a
test lubricant temperature of 1200F, for example, the Sommerfeld number of a
potassium-lubricated bearing can be simulated for any speed and load over a
potassium temperature range of 800°F to 1300°F. The comparable clearance of
the potassium-lubricated bearing must be approximately one-half that of the
water-lubricated bearing. A test on a bearing lubricated with water: at 120°F,
with a clearance of 0.0025 inches produces the same Sommerfeld number (at the
same speed and unit load) as a potassium-lubricated bearing with a clearance
of 0.00125 inches at a temperature of lZOOOF.

Kinematic viscosity is the fluid property of significance in estab-
lishing identical Reynolds' and Taylor numbers between the two fluids. Taylor
number is a measure of the degree of turbulence existing in the bearing. For
concentric cylinders, a Taylor number of 41,1 indicates the formation of vor-
tices which precede turbulence. Taylor number is defined as:

_ 2 ncPry /2

Ta v

N

If we wish to maintain equal Taylor numbers between the two fluids at

a given speed and shaft size:

3/2 _ . 3/2
El_ - 92_
veU
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That is, adjustment of the clearance ratio between the test and
application fluid can produce identical Taylor numbers. Figure 10 is a plot
indicating how clearance with a water-lubricated bearing can be adjusted to
simulate Taylor number for potassium between 800°F and 1300°F. With a water
lubricant temperature of 1200F, for example, tests on a water-lubricated bearing
with a given clearance produce the same Taylor number as would be obtained with
a potassium-lubricated bearing having about one-half the clearance.

Tests were carried out at different temperature levels between 70°F
and 150°F and no-load radial clearances ranging from approximately 1/2 to
2.5 mils. From Figures 9 and 10 therefore, at the test speeds and loads,
equivalent Sommerfeld and Taylor numbers were obtained as for potassium-
lubricated bearings between 800 and 1300°F and with clearances between 0.4 and
0.7 those of the water tests,

C. Selection of Test Bearings

Prior to testing, a number of bearing configurations were analyzed
to provide a guide as to load-carrying capacity and probable stability ranking.
The test bearing types and specific designs were chosen from among those studied,
which also included the Rayleigh step bearing, the pressure dam and the plain
(ungrooved) cylindrical bearing.

At present there does not exist a generalized theory for predicting
the onset of half-frequency whirl with complex bearings (i.e., bearings which
do not exhibit an axisymmetric response to load.) Even for simple cylindrical
bearinés operating in laminar flow, the effect of bearing variables upon the
threshold speed is difficult to predict beforehand. However, in most analyses,

-10-




such as Ref. [1], the fluid-film stiffness of the bearing fluid film enters as

an important parameter. According to the criterion of Poritsky, [2], a shaft

is unstable when the operating speed is equal to or twice the critical frequency
of the rotor-bearing system, Since the stiffness of the bearing is likely to

be a significant factor in the system critical speed, a high fluid-film stiffness
is therefore desirable to remove instability from the operating region. One
criterion for bearing selection, therefore is the radial fluid-film stiffness of
the different bearing types.

As described in detail in Ref. [3], a comparison of fluid-film stiff-
ness among several bearing types can be misleadipg if the basis for comparison
is dissimilar. In the analysis of different bearing types, the radial stiffness
of the bearings were compared on the basis of zero load and an equal, no load
maximum film thickness. Figure 11 presents the results of the analysis. It
will be seen that the radial stiffness depends upon bearing type and length/
diameter ratio even for the criteria specified.

A further criterion for bearing selection and design is the load-
carrying capacity. Table 2. from Ref. [3] presents a comparison of the dimen-
sionless load carrying capacity among several different bearing types and
designs. To establish a fair method of comparison between the different
bearing types, it is assumed that (1) the bearings have the same no-load
minimum clearance between shaft and bearing and (2) that load capacities at
equal film thickness under load are being compared. Table 2. compares the
capacities of the bearings for an assumed minimum film thickness under load
of 0.0005 inches and at different values of length/diameter ratio, and no-load
clearance.

With such a basis of comparison among the bearings studied, it was
found that the four pad, tilting-pad bearing studied has the highest static

-11-



stiffness at zero load, at a bearing length/diameter ratio of one-half. The
calculated value, in fact, is greater than the stiffness for the other bearing
types at twice the L/D studied for the four-pad bearing. Moreover, as shown

in the load comparison, the load capacity is comparable to that of the three-
lobe bearing, and at least one-half that of the two axial groove bearing. Thus,
on the basis of these two criteria, the tilting-pad bearing is the most
attractive.

It must be remembered, however, that other criteria are possible and
may even be of greater significance., For example, static stiffness may be
compared on the basis of an assumed load. Different bearings will exhibit
different eccentricity ratios for the same load. Hence, the ranking of radial
stiffness at a given load may be different from the relative ranking at zero
load. Attitude angle and inherent damping ability are two further bearing
characteristics which may be significant in improving the range of stable
operation.

From among the bearings analyzed, therefore, the following bearings
were selected for testing: the two axial groove of L/D = 1 and 1-1/2; the
three-lobe bearing L/D = 1; the compound cylindrical bearing, L/D = 1; the
orthogonally displaced elliptical bearing L/D = 1 and the four pad, tilting
pad bearing L/D = 1, as shown in Figures 2 to 7.

D. Test Bearings and Rotor Description

The bodies of the test bearings were manufactured from stainless steel
to match the temperature coefficient of expansion of the shaft. To prevent
seizure or galling at start up, a thin cylindrical liner of SAE 660 bronze was
pressed into the body and glued or soldered in place.

For the cylindrical bearings, the static load is applied midway between
the two axial feed-grooves. The water lubricant was introduced at the midpoint
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of each groove.

Clearances were varied by substituting shafts of different diameters
rather than substituting bearings. Figure 12 is a drawing of the plain test
shaft used in most tests. Diametral clearances of 0.002, 0,003, and 0.005 inches
were obtained by substituting the three shafts into the cylindrical test bearings
of Figures 2 and 3. Figure 13 shows the effect of lubricant temperature upon
the shaft-bearing clearance with the two-groove bearings in place., It will be
seen that a 50°F rise in temperature reduces clearance about 0.2 mil.

The four pad, tilting-pad bearing (L/D = 1) selected for testing is
shown in Figure 4. A four-pad bearing was chosen to provide a more nearly
symmetric response to a rotating load. Figure 14 is a detailed drawing showing
pad dimensions for the 1-1/4 inch wide pad. Static load was applied during test
in the pivot direction, Therefore, the effective area carrying static load is
taken as the product of the pad chord (0.80 inch) and the pad axial length
(1.25 inch). Each of the tilting pads was individually supplied with lubricant
through a drilled hole in the cylindrical pivot which connected with a feed hole
in each pad. The cylindrical pivot and pad rotate as an integral unit in the
retainer,

With a four-pad bearing of the type shown, it can be demonstrated that
the maximum locus of the shaft center approximates a square, with the distances
between sides representing the pivot-to-pivot clearances. The pivot-to-pivot of
this bearing type were chosen to correspond to the diametral clearance of the
test shafts in the two axial groove, cylindrical type bearings.

In the displaced arc bearing types shown in Figures 5, 6, and 7, the
center of the bearing arc does not coincide with the journal center when the
shaft is unloaded and theoretically centered. For the three lobe bearing shown

schematically in Figure 15, for example, when the shaft is centered at point o,
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the minimum clearance between shaft and bearing is given by:

- = C
hy= R, -Rg) - e=75-

where the terms are defined in Figure 15,

In the present program the lobe radius of the 3 lobe and compound
cylindrical bearing is fixed and the bearing clearance is varied by substituting
shafts. With a lobe radius of 0.6285 inch and the medium diameter test shaft
(1.2520 inch) of Figure 12, the minimum, calculated no-load clearance between
shaft and bearing is 0.5 mil. The smallest diameter test shaft (1.2500 inch)
produces a theoretical minimum film thickness at no-load of 1.5 mils. Thus,
with the three-lobe and compound cylindrical bearings, the minimum calculated
clearances obtained with the small and medium test shafts are the same as those
obtained with the medium and large diameter shafts, respectively, in cylindrical
bearings. Some measurements taken on the three-lobe and compound cylindrical
bearings are shown in Figures 16-21.

A schematic diagram of the displaced elliptical bearing is shown in
Figure 22. The minimum, no-load clearance ho can be related to the displacement
of the lobe centers by the expression:

_ 2 2.1/2
hy = (Rp - R - [27 + 8]

For the smallest diameter shaft, the calculated minimum clearance
between shaft and bearing at no-load is 1.06 mils. With the medium diameter
shaft, the calculated clearance is only 0.06 mils. Actual displacement measure-
ments of the medium diameter shaft in this test bearing, however, indicated a
larger clearance than the previously calculated value. Measurements of the
bore of the displaced elliptical bearings are shown in Figures 23-27.

Three variations of rotor mass distribution were employed during the

tests. The majority of tests were conducted with the plain shaft of Figure 12
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together with eccenter or unbalance discs outboard of each test bearing. A
variation in the mass distribution was obtained by substituting the cylindrical
concentric flywheels of Figure 26 for the eccenters. A further variation in the
mass was tested by substituting the high inertia shaft of Figure 27 for the plain
shaft, Figure 28 is a photograph of the test shafts. Table 4 summarizes the
calculated values of polar and transverse moments of inertia.

Calculations were made using an IBM computer to estimate the effect
of shaft diameter, mass distribution and fluid film stiffness on the critical
speed of the test rotors. These calculations are summarized in Table 5. For
the plain shaft with eccenters, calculations assuming rigid bearing supports
predict a critical speed of 24,845 rpm, With fluid film bearings having a
stiffness of 0.5 x 105 1b/inch, the critical speed is reduced to 20,770 rpm,

Thus, the fluid-film stiffness has a pronounced effect on the system
resonant frequency., Since the stiffness can only be estimated even for laminar
bearing flow, the system resonant speed range can only be approximated.

E., Test Rig Description

A cross-section of the test rig is shown in Figure 29. A test shaft
with a journal diameter of 1.250 inches is driven by a 15 hp variable frequency
induction motor through a flexible drive shaft. The two water-lubricated bearings
are separated by a 12.5 inch centerline span. Partial arc water-lubricated
loader bearings apply the desired static load through a pneumatic piston arrange-
ment. Both pneumatic pistons are coupled to the same adjustable air-supply line
to produce a symmetrical loading on the shaft. The loader bearings are mounted
on spherical pivots so as to be self-aligning. Figure 30 shows the calibration
data for the static load pistons.

Dynamic loads are applied by eccenters located outboard of each test
bearing. Each eccenter consists of a pair of cylindrical discs bored off center
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(Fig. 31). The discs can be rotated relative to one another on the shaft to
produce a deliberate unbalance of known magnitude and position. Eccenter cali-
bration is discussed in Reference 4 . It can be shown that the ratio of un-
balance at any angular setting W;e to the maximum unbalance W§M is given by

the expression:

=
<
@
o

1/2

[T - cos ©]

3

where 6 is the angular displacement of the discs from the position of zero
unbalance. The calculated maximum unbalance of 36.3 gram-inches agreed well
with the measured value of 35.9 gram-inches. A plot of the unbalance ratio
as a function of angle is given in Figure 32.

Four non-contacting displacement probes of the eddy-current inductance
type located outboard of the best bearings measured the shaft position relative
to the gage. Two gages are located at each test bearing in radial position 90°
with respect to one another and at 45° to the load line imposed by the pneumatic
loader pistons. Gage calibration is described in References 4 and 5. Table 6
summarizes the calibration data obtained with air only in the clearance gap.

Shaft speed is measured by means of an electronic counter sensing
the once-per-revolution pulse from an electromagnetic pickup mounted adjacent
to one eccenter.

Torque input to the test shaft is measured with a special non-contacting
instrumentation system detecting the twist in the long, thin drive shaft. Table 7
from Reference 4 lists the calibration values of torque to twist for the phosphor
bronze drive shafts. To calibrate the torque readout system, the two discs whose
angular displacement is measured were mounted on a rigid shaft extension of the
motor, The discs were rotated relative to one another preset amounts and the

torque output meter readings taken at various speeds. Results shown in Figure 33
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indicate satisfactory correlation between input angular twist and meter readings.

Lubricant inlet pressure and temperature are measured in the annular
feeding groove surrounding the bearing shell. Lubricant exit temperature is
measured by thermocouples adjacent to each test bearing. All thermocouple
temperatures are recorded on a multi-point recorder.

A schematic diagram of the test loop is shown in Figure 34. Heated
lubricant is drawn from a hot water tank by a positive displacement rotary pump
and fed to the test and loader bearings. Pressure is maintained through a
pressure regulator by-passing part of the pump output back to the hot water
reservoir. A sump pump returns lubricant to the reservoir through a heat ex-
changer. To prevent sump pump cavitation, a by-pass on the sump pump automatically
maintains a pre-set level of lubricant., Lubricant inlet feed pressure can be
further regulated through needle valves as shown on the diagram. An emergency
water supply to the rotor has also been provided to automatically supply city
tap water to the rotor in the event of pump failure. WNo difficulties were en-
countered, however, in several months of testing and the test loop has proved
to be satisfactory for supplying lubricant under the widely varying test
conditions.

F. Test Procedure and Whirl Determination

In the usual testing procedure, the test rig is first brought to
temperature by circulating the water lubricant at the desired temperature
level. The non-contacting gages for shaft motion measurements are adjusted
so that the variation in the gap as the shaft displaces is within the cali-
bration range. Usually the gages are adjusted so that a voltage signal nearly
zero represents the position of the shaft mid-way in its clearance along the
particular gage axis. Those values are recorded and are referenced to as the
gage zero's, i.e., the gage output signal corresponding to the zero eccentricity

position. -17-



With the test rig at the desired temperature, a series of static
loads are imposed on the shaft through the partial arc loader bearings. For
each of the static loads (beginning with zero load) the shaft speed is raised
in increments until either half-frequency whirl occurs, or a synchronous orbit-
ing occurs of an amplitude judged to produce near-rubbing conditions. For each
of the speed increments, data is recorded on shaft speed, displacement gage d.c.
voltage level, flow to test and loader bearings, static load, torque meter readings,
etc. The stability of shaft motion is monitored on an oscilloscope. For such
monitoring the biased output of the Bently probes is fed directly (without ampli-
fication) to the x and y axes of an oscilloscope. A calibration established for
this voltage-gap relationship using the oscilloscope permits a realistic picture
of relative shaft amplitude to be obtained with the shaft orbiting.

Plotting the x vs. y coordinates of the shaft axis as previously des-
cribed eliminates time as a parameter on the oscilloscope picture., Hence, with-
out further information, it would not be known whether an orbit of the shaft
was occurring at the shaft rotational frequency or at some other sub-harmonic
value.

To provide this further information, therefore, the oscilloscope beam
is intensified in brightness once each revolution of the shaft. This is ac-
complished by taking the signal generated by the magnetic speed pick-up, ampli-
fying it and feeding it into the "2" axis of the oscilloscope. The result is
that a stable synchronous whirl appears as an orbit with one dot or intensifi-
cation on the trace. (Fig. 35). A sub-harmonic orbiting of exactly half-
frequency appears as a stationary orbit with two such dots (Fig. 35B). If the
orbiting is slightly less than one-half frequency, the dots ap;ear ﬁo’rotate
on the otherwise stationary trace.

When the shaft is exhibiting such an instability, the output signal

of the unamplified probes is fed into a wave analyzer and the frequencies and
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amplitude. of the generated voltage wave is measured and recorded., From the
unamplified voltage-gap calibration of the displacement gages, the wave analyzer
r.m.s, voltage readings can be converted to vibrational amplitudes,

G. Range of Bearing Variables Tested

Table 8 summarizes the range of bearing test variables covered in the
present program. Table 9 summarizes the conditions under which tests were con-
ducted. As was discussed earlier in Section III-B, if the test fluid (water)
and the application fluid (potassium) possess identical absolute and kinematic
viscosities, tests on the water-lubricated bearing would then produce flow
conditions identical to those which would exist on a geometrically similar
potassium lubricated bearing. Since the viscosities of the two fluids are
similar, but not identical, tests on the water-lubricated bearing produce flow
conditions similar to those of a smaller-clearance potassium—lubficated bearing
of the same diameter and running at the same speed and load as the test bearing.
For example, tests on a water-lubricated, 2 axial gfoove bearing at 30,000 rpm
and with a 2 mil diametral clearance produce an identical Taylor number to a
similar bearing of 1 mil diametral clearance lubricated with potassium at
IZOOOF; The Sommerfeld number of the test bearing likewise will be close to
that of the potassium lubricated bearing at one-half the clearance.

From Table 8 and Figures 9 and 10, the potassium bearing conditions
comparable to the water-tests can be determined quickly. Since a majority of
the tests were carried out with 120°F water lubricant inlet temperature, it
can be seen that the test Sommerfeld and Taylor numbers correspond to those
of a potassium bearing at approximately one-half the test bearing clearance.

For an unloaded, plain cylindrical bearing, a Taylor number of 41,1
marks the formation of vortices which precede turbulence. Taylor numbers of

244 were obtained with the two axial groove bearing; even higher values (400)
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were produced with the tilting pad bearing. Thus, tests were carried on well
into the turbulent region by the previous criterion. It must be recalled,
however, that the critical Taylor number of 41.1 is based on concentric cylinders
(i.e., unloaded plain bearings). There exists no comparable turbulence criterion
for the complex geometries as tested in the present program.

Sommerfeld number was varied over a wide range for each test bearing
by varying both speed and load. The overall Sommerfeld number ranged from
approximately 0.0l to ®@(zero load). For comparison, with the above Sommerfeld
number fange the theoretical laminar flow solution predicts an eccentricity
ratio for a two axial groove bearing (L/D = 1) between O and 0.95.

Selected tests were carried out with the eccenters of Figure 31
deliberately unbalanced to produce a symmetrical unbalance force on the test
bearings. The maximum unbalance setting was 200° Based on the measured maximum
unbalance at 180° and from the equation given in the previous section, III-E,
the unbalance force is calculated as 14.1 lbs. at 100 r.p.s. For a non-orbiting
journal axis, the unbalance force increases as the square of the speed. The
maximum deliberate unbalance force attained (disregarding orbiting of the
journal axis) is calculated to be approximately 66 lbs. Most tests were
carried out with only residual unbalance in the system. It is quite possible
and perhaps even likely that the actual dynamic loads due to residual unbalance
and synchronous shaft whirling exceeded the deliberate unbalance forces.

H. Tests on Two Axial Groove Bearings, L/D =1

The tests conducted on this bearing type can be grouped into two
categories according to clearance and whether or not the shaft was deliberately
unbalanced. All tests were carried out with the shaft vertical. The table
below summarizes the tests with the medium diameter balanced shaft of Figure 12

having a nominal diametral clearance of 3 mils. These tests were No. 1, 100,
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2, 3, 300, 4, and 12. 1In Tests 1, 2, and 3, the primary condition changed was
the lubricant temperature. Tests 100 and 300 were essentially partial repeats
of Tests 1 and 3, respectively. Test 12 was a repeat of Test 3 with a new bear-
ing set. In Test 4, the eccenters of Figure 31 were replaced by the circular
flywheel discs of Figure 26,

1, Tests with 3 mil diametral clearance, zero deliberate unbalance

TWO AXTIAL GROOVE BEARING, L/D =1

Test Lube Static Load Shaft Rotor
No. Inlet Temp, Range Per Speed Description
Op Bearing, Lbs. Range, cps
1 90° 0-43 60-421 Plain Shaft with
100 Eccenters
2 150° 8.6-43 60-350 "
3 } 120° 0-43 60-321 "
300
12
4 120° 0.68.8 60-420 Plain Shaft with

End Flywheels

In these tests, half-frequency whirl was usually observed at the
lowest test speed with no static load. Increased radial static load increased
the threshold speed of half-frequency whirl., Table 10 lists the conditions
prevailing at the onset of half-frequency whirl. A good correlation was found
between the half-frequency whirl threshold and Sommerfeld number, as shown in
Figure 36, At Sommerfeld numbers less than approximately 0.25, the data show
that speed can be substantially raised for the test shaft without the limitation
imposed by half-frequency whirl. A further observation is that the increased
lubricant temperature of Test 2 and presumably the greater turbulence level did
not affect the threshold speed significantly., When the static load was suf-
ficient to suppress half-frequency whirl, synchronous whirl limited the test

speed.
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One test was conducted under conditions similar to the previous Test 3,
but with a tighter clearance, i.e., the large diameter shaft with a nominal
diametral clearance of 2 mils was used. The data is summarized below.

2. Test with 2 mil diametral clearance, zero deliberate unbalance

TWO AXIAL GROOVE BEARING L/D =1

plain shaft with eccenters

(*HFW = Half-Frequency Whirl)

( SW = Synchronous Whirl)
Test Lube Bearing Speed Range Type of Shaft Orbit*
No. Temp. Load-Lbs. cps
13 120°F 0 60 HFW
8.6 60-350 HFW
17.2 60-114 HFW
n 114-265 Stable (Slight SW)
" 265-350 HFW + SW
25.8 60-250 Stable + (Slight SW)
" 250-350 HFW + SW
34.4-77.4 60-350 SW at 250 No HFW

In contrast with the tests using a larger clearance bearing, in
Test 13, half-frequency whirl disappeared under certain conditions. At a low
load (8.6 1bs), half-frequency whirl, (HFW), occurred over the full speed
range. At a higher load, (17.2 1bs), the HFW which occurred at 60 cps start-
up speed disappeared at 114 cps.

It reappeared again at 265 cps and in combination with synchronous
whirl, (SW), at still higher speeds. At and above a bearing load of 34.4 1bs.,
however, only synchronous whirl was found to occur over the 60 to 350 cps speed
range tested.

Tests at two levels of unbalance were carried out with the two axial
groove bearing, L/D = 1 and a 3 mil nominal diametral clearance shaft. The

conditions for Test 301 were:
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a)
b)
c)
d)

plain shaft with eccenters set for 10o unbalance (3.26
lubricant nominal inlet temperature: 120°F

lubricant inlet pressure: 10 psig

loader bearing nominal flow rate: 0.4 gpm

For Test 302, the unbalance level was increased to 20

inches) and other conditions kept similar to Test 301.

Test
No.

301

302

3.

IO

gram-inch)

° (6.25 gram-

Tests with 3 mil diametral clearance and deliberate unbalance

TWO AXTAL GROOVE L/D = 1

L/D CD Unbalance Static Speed
(Mils) at 100 rps Load Range
1bs, Range
—_— 1lbs,
1 3 7.37 0-51.6 60-300
1 3 14.1 0-43 60-183

Tests on Two Axial Groove Bearing, L/D = 1-1/2

This bearing geometry was tested with three different

Shaft Stability

Half-Frequency
Whirl only below
8.6 lbs., 60 cps

Half-Frequency
Whirl at O load,
60 cps

rotor mass

distributions and three journal sizes at a zero unbalance level; in addition,

for two of the tests, the shaft was deliberately unbalanced a predetermined

amount and data collected on performance,

1.

a)
b)

c)

Test with 5 mils nominal diametral clearance, zero unb

alance, 2 axial

groove, L/D = 1-1/2

One test, (No. 5), was run with the above combination.

The testing conditions were:
plain shaft with eccenters set for zero unbalance
. . . o
lubricant nominal inlet temperature : 120 F

lubricant inlet pressure: 10 psig
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d) 1loader bearing flow rate: 0.4 gpm

The static load on the shaft was varied between O and 43 lbs. per
bearing in 6 steps; the speed range was 60 to 350 cps, limited by HFW amplitudes.
A behavior was observed similar to that obtained with the 3 mil nominal clearance
shaft, That is, the HFW threshold was delayed by the application of static load.
Table 11 summarizes the conditions prevailing at the threshold speed. Figure 36
is a plot of the threshold speed versus Sommerfeld number, which can be seen to
be similar to that obtained with the shorter L/D and tighter clearance shaft

(Fig. 35).

2, Test with 3 mil nominal diametral clearance shaft, zero unbalance, 2 axial

groove, L/D = 1-1/2

Conditions a,c, and d were kept the same for this test, (No. 7), as for
Test 5 above. The lubricant inlet temperature, however, was permitted to be at
room ambient to ascertain whether eccentricity ratio and attitude angles could
be determined more precisely. In this test the load was varied between 0 and
43,0 1lbs., per bearing. The speed range was 60 to 350 cps, with the upper limit
imposed by a combination of synchronous and half-frequency whirl. Data is sum-
marized in Table 11 and plotted in Figure 36.

3. Tests with 2 mils nominal diametral clearance, zero unbalance, 2 axial
groove, L/D = 1-1/2

Several tests were conducted with this configuration and are summarized

in the table below.
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TWO AXIAL GROOVE BEARING L/D = 1-1/2

(HFW = Half-Frequency Whirl)
(SW = Synchronous Whirl)

Test Temp. Static Speed Mass Stability Behavior
No. Load Range Distr.
Lbs,
6 75° 0-51.6 60-400 Eccenters HFW disappears with
(15 psig) speed, load increases
600 75° 0-43.,6 60-400 Eccenters " "
(70 psig)
18 120°F 0-77.4 60-570 End HFW at low speeds,
Flywheels loads, None at loads
> 34,4 1bs. up to
570 cps
19 120°F 0-0 60-250 Central HFW
: Mass
8.6 60-400 " HFW or HFW + SW over
range

17.2-77.4 60-330 n n - 1"

Table 12 summarizes the test conditions at which HFW disappeared
for Test 6 and 600, Table 13 summarizes the threshold speeds for the data of

Tests 18 and 19.

4, Test with 5 mil nominal diametral clearance, and deliberate unbalance,
2 axial groove bearing, L/D = 1-1/2

Test No. 501 conditions were as follows:
a) plain shaft with eccenters set for 5° unbalance (1.63 gram-inch)
b) 1lubricant nominal inlet temperature: 120°F
c) lubricant inlet pressure: 10 psig
d) 1loader bearing nominal flow rate: 0.4 gpm
Bearing static load was varied between O and 43.0 lbs. in 6 steps;
maximum test speed was 300 cps at the highest load, at which HFW occurred.
The general behavior observed was a synchronous shaft orbiting for a given
load until the speed was raised sufficiently to produce the combination type

instability. Higher static loads delayed the onset from 150 cps at 8.6 lbs.
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bearing load to 202 cps at 34.4 1bs. load.

5. Test with 3 mil nominal diametral clearance, and deliberate unbalance,

2 axial groove, L/D = 1-1/2

One test, (No. 701), was conducted on this configuration. The test
conditions were:
a) plain shaft with eccenters set for 10° unbalance (3.26 gram-inches)
b) lubricant nominal inlet temperature: 75°F
¢) lubricant inlet pressure: 10 psig
d) 1loader bearing flow rate: 0.4 gpm
The load was varied between 0 and 43.0 lbs. per bearing and the speed
between 60 and 300 cps. Half-frequency whirl was observed only at low speeds,
(60 cps), and at loads of 25.8 and below., Higher speeds and loads produced
synchronous shaft orbiting, limiting the maximum test speed.

J. Tests on Tilting-Pad Bearing, L/D =1

The four pad bearing shown in Figure 4 was tested with three shafts
to provide varying clearances. The test conditions imposed were:
1. Test No. 8 - largest shaft (1.253 inch diameter)
a) plain shaft with eccenters set for zero unbalance
b) 1lubricant nominal inlet temperature: 120°F
c¢) lubricant pressure adjusted to maintain flow of 0.4 gpm to test
and loader bearing
For this test the load was varied from zero to 77.4 lbs. per bearing

in 7 steps. The speed range covered was 60 to 350 cps and was limited by a

predominantly synchronous shaft orbiting. Half-frequency whirl was not observed;

however, tests at all levels of static load showed synchronous whirl beginning
at 150 to 200 cps. At speeds in the vicinity of 300 to 350 cps, the shaft

orbit pattern observed on the oscilloscope became non-repetitive, i.e., the

orbit appeared to "flutter." Typical oscilloscope traces showing this fluttering
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are given in Figures 38A and B.
2., Test No., 9 - smallest shaft (1.2500 inch diameter)
Test conditions a, b, and c were kept the same as for Test No, 8.
The load was varied between 0 and 77.4 1lbs. and the speed between 60 and 350 cps.,
The behavior was substantially the same as for Test 8. Speed was limited by
synchronous orbiting, with a "fluttering" of the shaft orbit observed at the
higher test speeds,
3. Test No., 10 - medium shaft (1.2520 inch diameter)
Test conditions were kept the same as in Tests 8 and 9. Load and
speed ranges were also identical, The shaft behavior was similar to that
occurring with Tests 8 and 9, with an unstaéle, predominantly synchronous

orbiting of the shaft limiting the test speed.

K. Tests on Three-Lobe Bearing, L/D =1

One test, (No, 11), was carried out on this bearing configuration
with the medium clearance shaft size, (diameter 1.252 inches). The other
test conditions imposed were:
a) plain shaft with eccenters set for zero unbalance
b) lubricant nominal inlet temperature: 120°F
¢) lubricant nominal inlet pressure: 20 psig
The load was varied between 0 and 51.6 lbs, per bearing in 6 steps
for this test, and the speed range covered was 0 to 350 cps. An attempt to
raise the bearing load to 77.4 lbs. resulted in a scoring of the lower bearing.
HFW was not observed with this bearing type. The bearing, however, exhibited
synchronous whirl for all static loadings at speeds beginning at 200 to 250 cps.
No further deliberate unbalance was imposed since testing was already limited

by synchronous whirl.
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L. Tests on Displaced Elliptical Bearing, L/D = 1

Three tests were carried out on this bearing configuration shown
in Figure 7. The test conditions common to all three tests were:
a) plain cylindrical shaft (Fig. 12) with eccenters (Fig. 31)
b) 1lubricant nominal inlet temperature: 120°F
c) flow rate to test bearing maintained at 0.14 gpm
The range of test variables and the observations on stability are

summarized below:

DISPLACED ELLIPTICAL BEARINGS

L/D = 1 120°F
Test Shaft Load Speed Shaft Motion
No. Size Range Range
Lbs, cps
15 Medium 0-51.6 60-400 HFW at 0 load, 270 cps.
SW + HFW at O load, 400 cps

16 Medium + 0-25.8 60-200 SW, entire range

Unbalance

(7.1b/100?cps)
17 Small 0-51.6 60-392 HFW at 0 load

HFW 4+ SW with load 2 8.6 1b,
speeds > 260 cps

M. Tests on Compound Cylindrical Bearing, L/D =1

One test, (No. 14), was carried out on this bearing type shown in

Figure 6, The essential test conditions were:

a) plain test shaft (Fig. 12) of smallest diameter with eccenters (Fig. 31)

set for zero unbalance
b) 1lubricant nominal inlet temperature 120°F
c) lubricant inlet pressure: 5 psig

Half-frequency whirl was observed with no radial load at a test
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speed of 60 cps. With a ldght load of 8,6 lbs., only synchronous whirl existed
until a speed of 350 cps was attained., A combination of half-frequency and
synchronous whirl was then observed. Heavier static loads produced only
synchronous whirl up to the maximum test speed of 350 cps. Loads were limited

to 34.4 1bs,

N. Comparison of Bearing Performance

Two of the test bearing types - the three-lobe and tilting pad bearings -
did not exhibit half-frequency whirl under any of the imposed test conditions,

The three-lobe bearing was tested at zero static load at speeds up to 350 rps,
(Test No. 11). Speed was arbitrarily restricted to 350 cps because of an in-
creasing amplitude of synchronous orbiting. A static load of 77.4 1lbs. on the
bearing stalled the test shaft. A similar test speed (350 cps) was attained
with the tilting pad bearing under a light load, (8.6 1lbs), and for each of the
three test clearances (Tests 8, 9, 10). A static load of 77.4 1bs., applied even
at the lowest test speed of 60 cps produced no difficulty.

With the compound cylindrical bearing, a speed of 350 cps was attained
under a static load of 8.6 1bs, (Test No. l4). A combination of half-frequency
and synchronous whirl prevented further speed increases. It was found necessary
to limit the static load to 34.4 1bs. The displaced elliptical bearing was
operated at zero load and speeds up to 3.50 cps; half-frequency whirl and
synchronous whirl were both observed over this frequency range (Tests 15, 16, 17).
The maximum applied load was 51.6 lbs.

With a two axial groove bearing, L/D # 1-1/2, a test speed of 400 cps
was attained without failure under a light static load of 8.6 1lbs. (Test No., 600)
and a 2 mil shaft diametral clearance. Half-frequency whirl which had occurred
at low speeds disappeared with the higher test speed values. A similar test

(No. 18) in which the eccenters were replaced by end flywheels permitted a
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speed of 350 cps to be reached with no static load. A combination type whirl
had appeared at 293 cps. With a load greater than 34.4 1lbs., however, no half-
frequency whirl instability was observed. The maximum test speed of 570 cps
was reached with this bearing type which also was found capable of sustaining
77.4 1bs. static load at a shaft speed of only 60 cps.

In Test No. 3 on the 2 axial groove bearing L/D = 1 with a light load
(8.6 1bs.) and a 3 mil diametral clearance, half-frequency whirl limited the
test speed to 195 cps.

Several tests were conducted in which a deliberate unbalance was
superimposed on the system. A similar amount of unbalance (3.26 gram-inch)
was imposed on the two axial groove bearing (L/D = 1, and 1-1/2) and the
orthogonally displaced elliptical bearing in Tests No. 301, 701, and 16 re-
spectively. This deliberate unbalance corresponds to a rotating load of
approximately 7.4 lbs, at 100 rps.

For both two axial groove bearings (L/D = 1, 1-1/2) a speed of 300 cps
was attained with a light static load (8.6 1bs.) and the above deliberate
unpbalance on each test bearing. A previous test (No. 3, L/D = 1) with no
unbalance produced a half-frequency orbiting at 195 cps; a static load of
25.8 1bs. with no deliberate unbalance was required to delay the onset of
half-frequency whirl to 300 cps. For the longer,two axial groove bearing with
no deliberate unbalance, a smaller static load (17.2 1bs.) was sufficient to
suppress half-frequency whirl to a speed of 307 cps.

The data on film thickness and éttitude angle is not accurate enough
to permit a detailed comparison among the different bearing types. As is
explained more fully in Reference 6, an apparent shifting of the gage zero
occurs when the shaft is rotating. The magnitude of the shift appears to be

speed dependent. The displacement gage calibration sensitivity, however, does
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not appear to be affected by ﬁhe zero shift, as is shown by Figure 39. Hence
the item §f primaryxinterest - the observation of shaft stability - was not
hampered.

When a different gage zero position is assumed for the high and lower
speed test runs, a reasonable trend of eccentricity ratio (or film thickness)

with Sommerfeld number exists. Typical data is shown in Figures‘40-44, for

the two axial groove bearing. Figure 44 illustrates the fact that small variations

in film thickness due to varying load at a constant shaft speed can be detected.
An attitude angle and eccentricity ratio for one of the test points are assumed
and the data referred to this test point. TFigure 45 shows the variation in
eccentricity ratio with Sommerfeld number for one test with the tilting pad
bearing. In Figure 45, the gage zero position assumed for the data reduction
was the "static" zero, i.e., the zero eccentricity position measured by back-
and-forth shaft displacement. Although the data trend at a given speed is in
the direction predicted by theory, the variation in absolute level precludes a
detailed comparison of film thickness and attitude angles,

A substantial amount of data on friction torque was accumulated in
the course of testing. Figures 46-59 presents the data in the form of plots
of friction factor (coefficient of friction) vs Sommerfeld number. Figures 60-
82 presents plots of torque coefficient vs Reynolds number, where torque coef-

ficient is the dimensionless ratio of unit shear stress to velocity head.

2
TC - 4R1§S f %(ng
%E = friction force at test bearing surface
R = shaft radius
AS = test bearing area exposed to viscous shear
-éf = mass density of water lubricant
V = journal surface velocity
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Figures 83-96 present friction torque data in the form of plots of
torque coefficient versus Reynold's number ratio. Reynold's number ratio is
the value of the test run Reynold's number to the critical value according to
the Taylor criterion marking the transition to turbulence. The test run Reynold's
number is based on the radial clearance for the cylindrical bearings and on the
minimum measured clearance for the displaced arc bearing types.

The maximum power measured in the tests occurred in Test No. 18 with
the two axial groove bearing, L/D = 1-1/2 and a nominal 2 mil diametral clearance.
The power absorbed was 3.14 hp at a test speed of 500 cps. The calculated torque
coefficient was 0.00299 at a Reynold's number of 2277, or about 2.15 times the
critical Reynold's number based on the Taylor criterion. By comparison, for an
unloaded cylindrical bearing in laminar flow the torque coefficient is given by
2/Re. The measured torque coefficient therefore is about 3.4 timesvgreater than
that for laminar flow.

A comparison of power loss and torque coefficient for several different
bearing types at 350 cps shaft speed is given below. In all tests, a light static
load of 8.6 1bs. was applied to the Bearing. Lubricant temperature was 1200F.

Power is the total delivered to the shaft.

Bearing L/D Journal Horsepower Torque Coefficient
Type - Diam,*
2 axial 1 L 0.991 0.00274
groove
1-1/2 L 1.28 0.00354
Tilting 1 L 0.772 0.00240
pad S 0.899 0.00277
Displaced 1 L 0.807 0.00223
ellipt. M .991 0.00274
Three lobe 1 M 1.055 0.00292
Compound 1 L 0.945 0.00262
Cylindrical *L = 1.253 inch
M =1,252 inch
S = 1.250 inch -32-




From the previous table it will be seen that the difference among
the beal;ing types is not great. The highest power was consumed by the
long, 2-axial groove bearing, which was also experiencing a combined
synchronous and half-frequency whirl under the test condition imposed.
The tilting-pad bearing with the special feed arrangement absorbed the

least power.
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Table 2 - COMPARISON OF DIMENSIONLESS LOAD CAPACITIES

BEARING L | LOAD CAPACITY 1076 w
TYPE & DESCRIPTION D ND?
FOR 0.0005 IN, MIN, FILM, CENTRAL
LOAD, 1-1/4 IN, DIA, SHAFT
NO LOAD MIN, FILM h, IN
0.001 0.00175 |0.0020 {0.0025
2 AXTAL GROOVE CYLINDRICAL 1/2]0.39 42 1 .38
1 | 2.1 1.83 1.53
1-1/2 | 4.4 3,2 2.53
DIS- THREE LOBE (FIG. 15) 1/4] .055 .067
PLACED = 0,002 IN, 1/2| .272 .25
ARC m = € 1 .81 .82
BRGS, h + ¢
COMPOUND CYL, (FIG. 15) {1-1/2]0.30 0.31
= 0.002
m = € 1 |o.11 0.12
h + €
(o]
ORTHOG, DISP, (FIG., 22) 1/210.1 0.045
gq=s=0.5 2A=0,002 IN,
RAYLEIGH STEP, | .. . 16 PAD| 1/2}] .00393 0.0045
B,/B, = 7/3, A/D = 0.00025 1 ,00785 0,0099
, 0,212 . 289 . 208
TILTING PAD (FIG, 4 ) 1/2 048 509 -208
d/B = 0.5588 PIVOT LOCATION Max./Min :




-

; Table 3
Journal Measurement of Test Shaft

(o]

<

>le0°

1

) 5
Angle Station No.

Drawing ’STA: Journal 1 Journal 2

&. Part NoJ No.| ©° 60° 120° 0° 60° 120°
S 1 [1.25295° 1.25297 1.25299 | 1.25296 1.25297 1.25296
S 2 [1.25298 1.25297 1,25298 |1.25300 1.25301 1.25300
3" 3 [1.25297 1.25299 1.25300 [1.25298 1.25299 1.25299
S g 1 [1.25210 1.25208 1.25208 [1.25204 1.25204 1.25203
S& | 2 [1.25208 1.25208 1.25208 |1.25206 1.25206 1.25205
SAN 3 |1.25202 1.25200 1.25202 |1.25207 1.25207 1.25204
3o 1 |1.24998 1.24999 1.24996 |1.24997 1.24996 1.24996
Sd 2 [1.25000 1.25000 1.24997 [1.25002 1.25001 1.25001
I~ 3 [1.24996 1.24996 1.24995 [1.25001 1.25000 1.24998

LARGE SHAF

S 1.25300 1.25297 1.25300 [1.25299 1.25298 1.25297
S 2 [1.25298 1.25297 1.25296 [1.25291 1.25294 1.25291
AN 1.25300 1.25301 1.25296 |1.25292 1.25295 1.25294
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CRITICAL SPEED

CALCULATED CRITICAL SPEEDS [RPM]

Table 5

SHAFT DIAMETER SHAFT SPAN  FILM STIFFNESS || HINGED - HINGED RIGID SHAFT CONFIGURATION
[inch] [inch) {1b/inch] ON SPRINGS
1.0 12 12100 | - 1. Critical = 16,314 l '-
2. Critical = 25,482
3. Critical = 33,469 ®
1.0 12 —— 1. Critical = 17,565 —— H’_} q]
2. Critical = 34,971 a A
1.0 12 — 1. Critical = 14,721 —ceew d}T: h
2. Critical = 30,240 A
Lo —-4
1.25 12,5 —mm—— 1, Critical = 27,147 = = cewee yAY x
1.25 125 eeee- 1. Critical = 24,845  wueew [f_'1 = {&;
1.25 12,5 eeeea 1. Critical = 33,880 wwuce- d]._(:]—[h
1.25 12.5 sx100 | 1. Critical = 15,697
2. Critical = 20,770
3. Critical = 26,719
1.25 12.5 1 x 100 | - 1. Critical = 19,685
2, Critical = 27,574
3. Critical = 29,541
1.25 12,5 5 x 105 _____ 1. Critical = 23,522 ?%
2. Critical = 39,492 g
AN
1.5 12,5 e-ee- 1. Critical = 34,713 - i lh
. . . = 34, —— = =
1.5 12.5 0.5x10° | e 1. Critical = 16,664 . [U
2, Critical = 18,853 §
3. Critical = 35,622 T W
1.5 12.5 rox10° | e 1. Critical = 23,226 —
2. Critical = 26,004 %
3. Critical = 36,120 N
1.5 12.5 sx1000 . 1. Critical = 34,370 :
A
—
1.25 2% J— 1. Critical = 33,159 —— [ﬂ%ﬁ#—m
1.25 7.5 1.0x10° | - 1. Critical = 19,170 d]—_q]
2, Critical = 30,032 > “§:\ .
1.25 7.5  emee- 1. Critical = 29,919 cece- U]T_A___I__f;{t‘
1.5 7.5  cema- 1. Critical = 55,964  —cecw [ﬂ?—_ﬂ]
1.5 7.5 1 x 10° c—— 1. Critical = 21,436 n:lT—_ﬁ‘__QJ
2. Critical = 28,939
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Table 10

Threshold Speed of Half-Frequency Whirl
2 Axial Groove Bearing

L/D=1
Radial Bearing Sommerfeld Reynolds' No.
Test Run Speed Clearance Load No. Ratio
No. No. Cps Mils Lbs. U L U L
1 7 237 1.450 8.60 .783 854 1.517 1.393
11 200 " 17.20 .360 .360 1.176 1.176
17 270 " 25.80 .305 .301 1.689 1.710
ok 320 " 34.40 .258 .255 2.100 2.124
100 5 217 " 8.60 .785 1.416
6 206 " 17.20 J4ho 1.657
7 264 " 25.80 .304 1.723
8 265 " 25.80 .306 1.730
9 302 " 34.40 .279 2.102
2 L 179 1.320 8.60 .537 .543 1.324 1.310
8 207 " 17.20 .310 .312 1.533 1.523
14 279 " 25.80 .281 279 2.048 2.063
3 L 195 1.390 8.60 .575 .559 1.431 1.471
T 222 " 17.20 .330 .318 1.616 1.675
12 300 " 25.80 .305 .293 2.130 2.217
300 L 205 " 0 - - 1.492 1.526
7 200 " 8.60 .585 .570 1.478 1.518
10 220 " 17.20 317 .312 1.649 1.680
L 3 190 " 8.60 579 .556 1.349 1.4oL
8 215 " 17.20 .325 .312 1.540 1.600
13 280 " 25.80 .280 271 2.022 2.084
19 350 " 34.40 264 .254 2.507 2.605
12 2 60 " 8.60 173 173 . .46 b7
3 192 " 8.60 .555 .555 1.428 1.429
4 226 " 17.20 329 324 1.669 1.693
T 189 " 8.60 .550 543 1.396 1.416
13 25k " 25.80 252 247 1,831 1.877
1k 321 " 34.40 232 .229 2.388 2.421




Test Run
No. No.

12
17
18
25
26

1L

19
20

27
35

Speed
Cps

156
140
180
212
245
313
350

300
307

60
300
338
320
327
350

Table 11
Threshold Speed of Half-Frequency Whirl

2 Axial Groove Bearing
L/D = 1.5

Radial
Clearance
Mils

2.385

"

Bearing
Load
Lbs.

17.20

8.60
25.80
34.40
34.40
43.00
43.00

8.60
17.20
25.80
25.80
25.80
34.40
43.00
43.00

.9930
L1443
.6382
.T094
- 5037
JdaTh
4290

Sommerfeld
No.

U L
.1099 L1094
.2136 .2093
.0887 .0867
L0784 0771
.0959 .0916
.0955 .0930
L1043 .1006
L9146 .0216

.0L86
140k
.6558
.7489
.5318
1231
.4290

Reynolds' No.
Ratio

U L
2.726  2.772
2.259 2.315
2.997 3.080
3.529  3.605
3.850 L.052
5.050 5.216
5.783  6.024
1.485 1.h4o07
1.500 1.k20

.263 .270
1.485 1.446
1.696 1.607
1.606 1.521
1.619 1.597
1.80k 1.80L



Test
No.

600

Table 12

Threshold Spéed of Half-Frequency Whirl

2 Axial Groove Bearing

L/D=1 1/2
Radial Bearing
Run  +Speed Clearance Load Sommerfeld
No. cps Mils Lbs, No.
U L
2 64 0.932 43.00 1716 .1754
4 100 8.60 1.6994 1.6441
13 110 17.20  ,9219 ,9293
20 112 25.80 .6344  .6395
22 150 25.80  .8381  .8448
29 124 34.40 ,5268  .5238
35 101 34.40  ,3433  .3508
42 107 8.60 1.6839 1.6767
48 60 17.20 .9972  ,9929
55 100 8.60 1.7081 1.6324
63 92 0.932 17.20 .7645  .7509
72 90 25.80 .5040  .4939
80 92 34,40  .3864  .3735
86 98 43.00 .3248  ,3227

+Speed at which HFW disappears as speed is increased
for constant load.

Reynolds' No.

Ratio
4]

.157
.232
<259
.260
.353
.288
.234
.267

.284

.230
.218
211
.216

.233

L
.154
241
,258
.259
.352
.291
.230
.268

+285

.241

.22%1

.215
.223

<234
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1b-sec/in

+8

Viscosity x 10°

18

16

14

12

10
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Figure 13 Effect of Temperature on Shaft-Bearing Clearance
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RS = Shaft Radius
R, = "Lobe" Radius
€ = Ellipticity = Distance from Bearing Center O to Centers of
Lobe Radii 01, 02, 03.
.% = QRL - ns) = Lobe Clearance
' 2¢
m = Ellipticity Ratio = o

Figure 15, Compound Cylindrical and Three Lobe Bearing Geometry
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FIGURE 18,
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Bearing Bore
Contour

0.D, of Bearing

Three Lobed Bearing
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Figure 19

Cylindrical Bearing - 802
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Figure 20

Cylindrical Bearing - 802
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Contour of Compound Cylindrical Bearing Bore Consisting of Three Off-set
Cylindrical Bearing Segments.
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FIGURE 21. Displaced Cylindrical Bore of Bearing Segment
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Figure

Lobe Radius

Shaft Radius

Displacement of Lobe Centers

RL - RS = Lobe Radial Clearance
2\
< s = %E = Displacement Ratios

22, Orthogonally Displaced Elliptical Bearing Geometry
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FIGURE 25.
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Figure 31, Eccenters for Dynamic Load Application
(Zero Unbalance Shown)
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Figure 32, Eccenter Unbalance Ratio at Different Angular Settings
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Figure 34, Diagram of Lubricant Loop
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(b) Test No.100 Run No. 6 Speed 254 CPS.
Static Load 17.2 Lbs. (0.2 Volts/cm)

Figure 35,

(a) Test No.100 Run No. 10 Speed 393 CPS.
Static load 34.4 Lbs,

Oscilloscope Traces of Half-Frequency and Synchronous
Whirl., 2 Axial Groove Bearing, L/D = 1, 3 mil Nom, Diam,
Clear,, 90°F nom, Lubricant Temp.
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Figure 36,
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2
Sommerfeld No., = /] j
A8 (R

Threshold Speed of HFW vs Sommerfeld No.
2 Axial Groove Bearing L/D=1
3 Mil Nom. Diam. Clearance




Threshold Speed of Half-Frequency Whirl
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\ |
\
- 350 © \A |
Unstable Region A
A A Test No. 7
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300 ——}— Threshold
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250 .
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Figure 37, Threshold Speed of Half-Frequency Whirl
vs Sommerfeld Number

2 Axial Groove Bearing, L/D=1%




TILTING PAD BEARING

Test No. 8 Run 43,44
Plain Shaft with Eccenters (Fig. 12)
Max. Journal Diam.

120° Lubricant 77.4 1bs. Static Load

300 CPS

Gage #2&4 Gage #1&3

Z Lower Bearing \-Upper Bearing

350 CPs

Gage #2&4 Gage #1&3

Figure 38, Oscilloscope Traces of Shaft Orbit in Tilting Pad Bearing,



Gage 1,2 o Gage 3,4
j+ Gage 1 +a 457 epe 5T g+

Test A / \\
/
/;/’ < '\\\ Attitude Angle
A' T OA!\\\ ) Load Line
/
{ \\ O+ />’ >.+ Gage 3
=
Test B ‘\ / ;
|
!

Calculated Brg. Diametral Clearance = 3 mils
0.2 volt/Cm. Scope sensitivity; 0.25 volts/mil gag%i%fope

calib.
Gage zero shift with speed
Two axial groove bearing L/D =1
3 mil diametral clearance shaft

Data of November 4, 1963

Test A - Half frequency whirl at 17.5 cps shaft speed
D.C. voltmeter readings

#1 gage - 1.8V calibration .09628 mils/volt
#3 gage - 2.3V calibration .09706 mils/volt

Test B - Half frequency Whirl at 168 cps shaft speed
D.C. Voltmeter readings

#1 gage - 13.2vV
#3 gage - 3.8V

Figure 39, Gage Zero Shift with Speed
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Figure 40,




2 Axial Groove Brg., I./D=1
3 Mil Nom. Dia. Clear.
120°F Lube. Temp.

Gage zeros based on
Avg. of runs 1 & 18 for 60 cps
Avg. of runs 3 & 17 for 60 cps

Load Line
‘
\1'
/ ¢\i
o 60 cps
A A 100
(] 150
900° 0 200
vV 250
D 300
80°
70°
Eccentricity
Ratio

Figure41 . Eccentricity Ratio vs Attitude Angle
Test No. 3, Lower Bearing



z ﬁn.m.w .mJ\um *ON pIoFisuuos

€°C %°0 £°0 ¢'0 1°0 0
0 .
le]
Z
el
~
&
¢°0 H
-2 .
/J/ ” wn .n
=]
- B vo g 53
\ / no o
(01 *3°¥) MOTd ‘weT TEJT3I2I09YL -’ 0 / e D9
4 @ < 28
v \LD/ 0.0 o FOPN
O R
O o S .
A - O
4 O 71 g~
ose 0 IFOMN . TR
; TS, 8°0 9w
00 1¢ [
S ¢ N )
0s¢ B ~§
002 . M
Y 0°'1 o
0sT O 5
&0
oot V ﬁ
sdo g9 O

sdo g9 £ 103 gz ‘7 suny jo °s8Ay
sd> g9 103 Tz ‘%I “6 suny Jo °s3Ay
:uo paseq soxaz 33eH

*1p97d "WETp °‘wou °TIW ¢

*dwa3 *aqny ‘wou JI,0ZT ‘I=0/T1 ‘81q @aa00a8 TeIXE T
qny o0 1=0/ T

Sutaeag I9m0T ‘H °ON 3ISS]




Test No. 4, LOWer Bearing
2 Axial Groove, L/D=1

3 M%l nom. diam. clear.
120°F Lube. Temp.

Gage zeros based on:
Avg. of Runs 9, 14, 21 for 60 cps
Avg. of Runs 2, 22 for 60 cps

o 60 cps
A 100
o 150
1.0 8 6 4 .2 0o 0 200
1
1 | | [ 7 250
D 300
Q
80 .2 0 350
70
A
Eccentricity
Ratio
.6
.8
Attitude Angle ¢
10 1.0

Figure 43 Eccentricity Ratio vs Attitude Angle
Test No., 4, Lower Bearing
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